首页

AD联系:2102450763

网上老虎机娱乐

时间:2020-02-19 00:00:21 作者:bbin糖果派对游戏平台 浏览量:48866

AG专属域名🐷【6ag.shop】🐷网上老虎机娱乐2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程,见下图

石墨电极的锂化与膨胀过程

石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程,见下图

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程,如下图

石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程

石墨电极的锂化与膨胀过程

如下图

石墨电极的锂化与膨胀过程,如下图

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线,见图

网上老虎机娱乐石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程

石墨电极的锂化与膨胀过程

石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线

石墨电极的锂化与膨胀过程

石墨电极的锂化与膨胀过程

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线。

石墨电极的锂化与膨胀过程

网上老虎机娱乐石墨电极的锂化与膨胀过程

石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程。

石墨电极的锂化与膨胀过程

1.石墨电极的锂化与膨胀过程

石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程

2.石墨电极的锂化与膨胀过程。

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线

3.石墨电极的锂化与膨胀过程。

石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线

4.石墨电极的锂化与膨胀过程。

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线石墨电极的锂化与膨胀过程2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线。网上老虎机娱乐

展开全文
相关文章
电子老虎机网站网址

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线

pt老虎机出分游戏

石墨电极的锂化与膨胀过程....

88必发娱乐老虎机

石墨电极的锂化与膨胀过程....

mg水果老虎机

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线....

网络电子游戏老虎机

石墨电极的锂化与膨胀过程....

相关资讯
亚虎娱乐PT客户端

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线....

森林舞会大满贯游戏

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线....

网上pt老虎机

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线....

88老虎登录网址

2018-09-11【8ag.shop】:锂想生活   锂离子电池鼓胀是一个常见的问题,特别是大的铝壳和软包电池,锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。电池鼓胀,一方面电池厚度和应力的改变可能引起电池性能的变化,对电池的寿命和可靠性造成不利的影响。另一方面也制约了电池的成组设计。  电池内部产气是导致电池鼓胀的一个重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分解所致。电解液分解有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分解产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分解,电解液中的EC、DEC等溶剂在得到电子后,均会产生自由基,自由基反应的直接后果就是产生低沸点的烃类、酯类、醚类和CO2等。  电池极片的厚度变化又存在以下几种情况:  (1)极片辊压后,搁置时厚度的反弹,压实密度越大反弹越大;在相同的应力下,粘接剂弹性模量越大,极片搁置反弹越小,干燥也会导致极片反弹。  (2)极片吸收电解液溶胀,极片厚度增加。  (3)充放电过程中,锂嵌入导致晶格参数变化引起的电极膨胀。  本文主要介绍锂离子电池石墨负极锂化以及极片膨胀过程。  石墨纽扣半电池锂化以及极片膨胀过程如图1所示,第一次放电锂化时,随着锂离子嵌入石墨层间,电极电势逐渐降低,而极片厚度膨胀率逐渐增加。整个过程可以分为a~e多个阶段,随着石墨层间嵌入的锂含量增加(x逐渐增加),LixC6存在几种不同的相,表1列出了这几种相的特征,x表示化合物LixC6中锂的摩尔含量,d是晶格参数石墨层间距,随着锂嵌入量增加,石墨从2H相依次转变,SOC50%时,转变为LiC12,完全锂化后变为LiC6,理论容量为372mAh/g。这个转变过程中,层间距d逐步增加,从而导致极片厚度增加。  图1所示中,各个阶段锂化和膨胀过程如下:  (1)f+e区间:石墨首次锂化时,在800mV-200mV电压区间,主要是SEI膜形成过程、极片中的颗粒重排过程,以及2H=>1L的过程,总体极片膨胀率大概1.5%。  (2)d+c区间:在200mV-100mV电压区间,主要发生1L=>4L=>3L转变过程,极片膨胀率大概也是1.5%。  (3)b区间:在100mV电压平台,主要发生3L=>2过程,在这个过程中,极片几乎不发生膨胀。  (4)a区间:在70mV电压平台,主要发生2=>1过程,在这个过程中,极片膨胀率大概为1.2%。  随后的脱锂过程,除了SEI膜形成外,各个阶段几乎是不可逆的。脱锂电压变化过程依次经历a、b、c、d、e过程,对应的极片个膨胀过程依次为A、B、C、D、E。从图中可见,在B区间,极片几乎不发生膨胀,膨胀曲线斜率几乎为0,这个阶段主要发生3L=>2过程。我们从转变过程的层间距变化可以解释这个现象。膨胀曲线的斜率D可以由下式推导,根据个阶段的层间距变化以及锂含量变化计算,根据下面计算结果可见,3L=>2转变斜率远小于其他过程,因此,膨胀几乎不发生。  图1石墨电极充放电极电化学膨胀过程  图2是石墨脱嵌锂过程中,在线测的的XRD图谱演变过程,可以直观看到石墨脱锂嵌锂过程中各物相演变。  图2石墨充放电过程在线XRD图谱  图3是NMC-石墨全电池的膨胀曲线,膨胀率对容量二次求导,得到膨胀曲线的两个拐点,分别对应x=0.23和x=0.5,由表1可知,这两点对应表1中的3L和2相。在这两点之间,电池几乎不发生膨胀,膨胀曲线斜率很小,这与石墨电极的膨胀曲线吻合,对应3L=>2转变过程,其斜率远小于其他过程。因此,全电池的膨胀过程主要取决于石墨电极的膨胀。图3NMC-石墨全电池的膨胀曲线....

热门资讯